

Update on the

Hurricane Nest Project

32nd Conference on Hurricanes and Tropical Meteorology April 20, 2016- San Juan, PR Steven Diaz
CIMAS/U. Miami
NOAA/AOML/HRD
Numerical Modeling Group

High Impact Weather Prediction Project

Funded by the Disaster Relief Appropriations Act of 2013

Project Manager

T. Schneider, ESRL

3.1 Hydrostatic Global Models

POC: S. Benjamin, ESRL

3.3 Moving Hurricane Nests

POC: S. G. Gopalakrishnan, AOML

& V. Tallapragada, NCEP

3.5 Test Program

POC: B. Strong, ESRL

3.2 Non-Hydrostatic Gbl Models

POC: J. Whitaker, ESRL

3.4 NMME Expansion

POC: J. Huang, NCEP

The Team

Personnel from:

AOML Team

T. Quirino (Nesting)

S. Diaz (Initialization)

X. Zhang (HWRF transitions)

J. Delgado (Software support)

J. Prusa (Idealized framework)

S.G.Gopalakrishnan (Analysis)

EMC Team

T. Black (Nesting)

M. Pyle (NPS)

Q. Liu (Initialization)

W. Wang (Physics)

S. Trahan (Vortex tracker)

L. Zhu (Idealized framework)

In collaboration with:

Mesoscale Modeling Group, EMC/NCEP, College Park, MD

Acknowledgements:

T. Schneider, R. Atlas, F. Marks, G. DiMego and F. Toepfer

Outputs & Deliverables

"The primary goal of this project is the development of a global, non-hydrostatic, medium-range prediction system capable of explicitly resolving cloud processes..."

--HIWPP Project Plan Oct. 2013

- Create the next-generation, non-hydrostatic modeling system capable of better capture of multi-scale land-storm interactions (emphasis on rainfall and size prediction)
- Provide proof-of-concept of a global model with multiple moveable nests (i.e., nests on all tropical cyclone systems worldwide)
- Make available to other collaborators the options being developed in this effort to test the nesting system with IC's and BC's from different models (within the NEMS framework)

'NOAA Environmental Modeling System'

A shared, high-performance software infrastructure

NEMS compatible solvers include: GFS, GEFS, FIM, NMMB

NMMB

(Nonhydrostatic Multiscale Model on B-grid)

- Global Configuration
 - Low resolution
 - No nests
- Regional Configuration
 - Single nest
 - No tracking
- Used in North American Mesoscale ('NAM') Model
- Compatible with NEMS

HWRF

(NMM on rotated E-grid)

- Hurricane-specific components
- Operational Configuration
 - Proven capability
 - Single-storm only
- Basin-scale Configuration
 - Larger outer domain
 - Multi-storm capability
- Automated storm tracking
- Incompatible with NEMS

The Plan

Project Statement: "...All hurricane-specific components from HWRF will be transitioned to the NEMS framework..."

- Make all hurricane-specific components compatible with NMMB (nesting, physics, vortex initialization)
- Mimic 2013 Basin-scale HWRF (*HFIP-funded product of HRD)
- Demonstrate the feasibility of high resolution, multi-nested models on regional and global scales (focus on land-falling TCs)

BASIN HWRF 2014

Milestones

Milestone	Completed	
Configuration & Testing	Dec 2014	
HWRF Physics Transitions	Sept 2014	
Idealized Framework	April 2015	
HWRF Vortex Tracker	Jun 2015	
HWRF vortex initialization and cycling	Dec 2015	
Semi-Real Time testing	On-going	
Multi-Season Testing, Verification, Rainfall Evaluation	Postponed due to lack of HPC	

Configuration and Testing (May 2014)

Seven day forecasts on 576 processors

<u>Project Statement</u>: "...this project will leverage on NOAA's success with HWRF towards creating the next-generation HWRF within NEMS framework."

Runtime: 4 minutes

Runtime: 13 minutes

Runtime: 2 hours 10 min

- Uniform *3 km* basin-scale run in progress – requires more dedicated nodes

Definition of HWRF Physics

HWRF Physics: suite of subroutine options tailored for *tropical cyclones*

NAM Physics: suite of subroutine options tailored for *mesoscale phenomena*

Model/Scheme	"HWRF Physics"	"NAM Physics"
Radiation (LW):	RRTM	GFDL
Radiation (SW):	RRTM	GFDL
Convection:	SASHUR	BMJ
Microphysics:	FER_HIRES	FER
Turbulence:	GFSHUR	MYJ
Surface Layer:	GFDL	MYJ
Land Surface:	GFDLSLAB	NOAH

Impact of HWRF Physics

'HWRF Physics' vs 'NAM physics'

- In one case study, NMMB with 'HWRF physics' showed characteristics closer to the observations when compared to NMMB with 'NAM physics'.
- The 'NAM physics' produced a weaker hurricane compared to 'HWRF physics'.

Idealized Tropical Cyclone (ITC)

<u>Project Statement</u>: Develop Idealized capability for hurricane simulations in NMMB.

Vortex Cycling for Multiple Storms

Vortex-cycling:

The augmentation of the 0-hr GFS vortex, based on the previous 6-hr NMMB forecast.

The HNMMB System (Oct 2015)

Fiona_08L

- **➤ NEMS framework**
- **≻NMMB** dynamic core
- >HWRF physics

- >HWRF tracking
- >HWRF cycling
- **▶18:6:2** km resolution
- >Fully automated
- **≻**Version controlled
- **≻**Adv. diagnostics

Experimental Web-Site/Products

http://storm.aoml.noaa.gov/hnmmb

Global Nesting

This is perhaps the first of its kind! Global Configuration with Moving Nest on Tropical Systems Worldwide!

Path Forward

Summary:

- All major milestones of the Hurricane Nesting Project have been met.
 (i.e., 'HNMMB' has been developed within the NEMS framework)
- Proof-of-concept of global-to-local scale Hurricane Prediction System has been demonstrated and validated in a laboratory environment. (Readiness Level 5)
- Future advancements to include ocean coupling, data assimilation (DA), physics improvements, and testing and evaluation (T&E).

End of Presentation

Hurricane Nest Project

End of Presentation

Additional slides...

Track & Intensity Plots

Track & Intensity Errors: ERIKA

ERIKA (2015082518 - 2015082812) multi-storm; "HWRF physics"

Forecast Hour

Track & Intensity Errors: JOAQUIN

JOAQUIN (2015092800 - 2015100218) multi-storm; "HWRF physics"

Forecast Hour

Track & Intensity Errors: PATRICIA

PATRICIA (2015102018 - 2015102318) multi-storm; "HWRF physics"

Distribution of Runtimes

Distribution of Runtimes on Theia

(34 cycles of ERIKA+/JOAQUIN+/PATRICIA+) (35 cycles of ERIKA/JOAQUIN/PATRICIA)

Track & Intensity Plots: ERIKA

Track & Intensity Plots: JOAQUIN

Track & Intensity Plots: PATRICIA

Intensity: ERIKA

Intensity: JOAQUIN

Intensity: PATRICIA

Track: ERIKA

Track: JOAQUIN

Track: PATRICIA

